MPC4
MATHEMATICS
Unit Pure Core 4

Thursday 24 January 20089.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Given that $\frac{3}{9-x^{2}}$ can be expressed in the form $k\left(\frac{1}{3+x}+\frac{1}{3-x}\right)$, find the value of the rational number k.
(b) Show that $\int_{1}^{2} \frac{3}{9-x^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left(\frac{a}{b}\right)$, where a and b are integers.

2 (a) The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=2 x^{3}+3 x^{2}-18 x+8$.
(i) Use the Factor Theorem to show that $(2 x-1)$ is a factor of $\mathrm{f}(x)$.
(ii) Write $\mathrm{f}(x)$ in the form $(2 x-1)\left(x^{2}+p x+q\right)$, where p and q are integers.
(2 marks)
(iii) Simplify the algebraic fraction $\frac{4 x^{2}+16 x}{2 x^{3}+3 x^{2}-18 x+8}$.
(b) Express the algebraic fraction $\frac{2 x^{2}}{(x+5)(x-3)}$ in the form $A+\frac{B+C x}{(x+5)(x-3)}$, where A, B and C are integers.

3 (a) Obtain the binomial expansion of $(1+x)^{\frac{1}{2}}$ up to and including the term in x^{2}.
(2 marks)
(b) Hence obtain the binomial expansion of $\sqrt{1+\frac{3}{2} x}$ up to and including the term in x^{2}.
(2 marks)
(c) Hence show that $\sqrt{\frac{2+3 x}{8}} \approx a+b x+c x^{2}$ for small values of x, where a, b and c are constants to be found.
(2 marks)

4 David is researching changes in the selling price of houses. One particular house was sold on 1 January 1885 for $£ 20$. Sixty years later, on 1 January 1945, it was sold for $£ 2000$. David proposes a model

$$
P=A k^{t}
$$

for the selling price, $£ P$, of this house, where t is the time in years after 1 January 1885 and A and k are constants.
(a) (i) Write down the value of A.
(ii) Show that, to six decimal places, $k=1.079775$.
(iii) Use the model, with this value of k, to estimate the selling price of this house on 1 January 2008. Give your answer to the nearest $£ 1000$.
(b) For another house, which was sold for $£ 15$ on 1 January 1885, David proposes the model

$$
Q=15 \times 1.082709^{t}
$$

for the selling price, $£ Q$, of this house t years after 1 January 1885. Calculate the year in which, according to these models, these two houses would have had the same selling price.

5 A curve is defined by the parametric equations $x=2 t+\frac{1}{t^{2}}, \quad y=2 t-\frac{1}{t^{2}}$.
(a) At the point P on the curve, $t=\frac{1}{2}$.
(i) Find the coordinates of P.
(ii) Find an equation of the tangent to the curve at P.
(b) Show that the cartesian equation of the curve can be written as

$$
(x-y)(x+y)^{2}=k
$$

where k is an integer.

Turn over for the next question

6 A curve has equation $3 x y-2 y^{2}=4$.
Find the gradient of the curve at the point $(2,1)$.
(5 marks)

7 (a) (i) Express $6 \sin \theta+8 \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$. Give your value for α to the nearest 0.1°.
(ii) Hence solve the equation $6 \sin 2 x+8 \cos 2 x=7$, giving all solutions to the nearest 0.1° in the interval $0^{\circ}<x<360^{\circ}$.
(b) (i) Prove the identity $\frac{\sin 2 x}{1-\cos 2 x}=\frac{1}{\tan x}$.
(ii) Hence solve the equation

$$
\frac{\sin 2 x}{1-\cos 2 x}=\tan x
$$

giving all solutions in the interval $0^{\circ}<x<360^{\circ}$.

8 Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 \cos 3 x}{y}
$$

given that $y=2$ when $x=\frac{\pi}{2}$. Give your answer in the form $y^{2}=\mathrm{f}(x)$.

9 The points A and B lie on the line l_{1} and have coordinates $(2,5,1)$ and $(4,1,-2)$ respectively.
(a) (i) Find the vector $\overrightarrow{A B}$.
(ii) Find a vector equation of the line l_{1}, with parameter λ.
(1 mark)
(b) The line l_{2} has equation $\mathbf{r}=\left[\begin{array}{r}1 \\ -3 \\ -1\end{array}\right]+\mu\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$.
(i) Show that the point $P(-2,-3,5)$ lies on l_{2}.
(ii) The point Q lies on l_{1} and is such that $P Q$ is perpendicular to l_{2}. Find the coordinates of Q.

END OF QUESTIONS

